Submillisecond Kinetics of Glutamate Release from a Sensory Synapse

نویسندگان

  • Henrique von Gersdorff
  • Takeshi Sakaba
  • Ken Berglund
  • Masao Tachibana
چکیده

Exocytosis-mediated glutamate release from ribbon-type synaptic terminals of retinal bipolar cells was studied using AMPA receptors and simultaneous membrane capacitance measurements. Release onset (delay <0.8 ms) and offset were closely tied to Ca2+ channel opening and closing. Asynchronous release was not copious and we estimate that there are approximately 5 Ca2+ channels per docked synaptic vesicle. Depending on Ca2+ current amplitude, release occurred in a single fast bout or in two successive bouts with fast and slow onset kinetics. The second, slower bout may reflect a mobilization rate of reserve vesicles toward fusion sites that is accelerated by increasing Ca2+ influx. Bipolar cell synaptic ribbons thus are remarkably versatile signal transducers, capable of transmitting rapidly changing sensory input, as well as sustained stimuli, due to their large pool of releasable vesicles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Presynaptic capacitance measurements and Ca2+ uncaging reveal submillisecond exocytosis kinetics and characterize the Ca2+ sensitivity of vesicle pool depletion at a fast CNS synapse.

The intracellular Ca2+ sensitivity of synaptic vesicle fusion is an important determinant of transmitter release probability, but it is unknown for most CNS synapses. We combined whole-cell membrane capacitance measurements and Ca2+ uncaging at the large calyx of Held nerve terminals to determine the Ca2+ sensitivity of synaptic vesicle fusion at a glutamatergic CNS synapse, independent of reco...

متن کامل

Submillisecond AMPA Receptor-Mediated Signaling at a Principal Neuron–Interneuron Synapse

Glutamatergic transmission at a principal neuron-interneuron synapse was investigated by dual whole-cell patch-clamp recording in rat hippocampal slices combined with morphological analysis. Evoked EPSPs with rapid time course (half duration = 4 ms; 34 degrees C) were generated at multiple synaptic contacts established on the interneuron dendrites close to the soma. The underlying postsynaptic ...

متن کامل

Transport direction determines the kinetics of substrate transport by the glutamate transporter EAAC1.

Glutamate transport by the excitatory amino acid carrier EAAC1 is known to be reversible. Thus, glutamate can either be taken up into cells, or it can be released from cells through reverse transport, depending on the electrochemical gradient of the co- and countertransported ions. However, it is unknown how fast and by which reverse transport mechanism glutamate can be released from cells. Her...

متن کامل

Few CaV1.3 channels regulate the exocytosis of a synaptic vesicle at the hair cell ribbon synapse.

Hearing relies on faithful sound coding at hair cell ribbon synapses, which use Ca2+-triggered glutamate release to signal with submillisecond precision. Here, we investigated stimulus-secretion coupling at mammalian inner hair cell (IHC) synapses to explore the mechanisms underlying this high temporal fidelity. Using nonstationary fluctuation analysis on Ca2+ tail currents, we estimate that IH...

متن کامل

Metabotropic glutamate receptors and glutamate transporters shape transmission at the developing retinogeniculate synapse.

Over the first few postnatal weeks, extensive remodeling occurs at the developing murine retinogeniculate synapse, the connection between retinal ganglion cells (RGCs) and the visual thalamus. Although numerous studies have described the role of activity in the refinement of this connection, little is known about the mechanisms that regulate glutamate concentration at and around the synapse ove...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 21  شماره 

صفحات  -

تاریخ انتشار 1998